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Abstract
External stimuli and tasks often elicit negative BOLD responses in various brain regions, and grow-

ing experimental evidence supports that these phenomena are functionally meaningful. In this

work, the high sensitivity available at 7T was explored to map and characterize both positive

(PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in vari-

ous brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI

techniques were employed for data acquisition, and procedures for exclusion of large draining vein

contributions, together with ICA-assisted denoising, were included in the analysis to improve

response estimation. Besides the visual cortex, significant PBRs were found in the lateral

geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions,

response durations increased monotonically with stimulus duration, in tight covariation with

the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex,

default-mode network (DMN) and superior parietal lobule; NBR durations also tended to

increase with stimulus duration, but were significantly less sustained than the visual PBR,

especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex

were further studied for checkerboard contrast dependence, and their amplitudes were

found to increase monotonically with contrast, linearly correlated with the visual PBR ampli-

tude. Overall, these findings suggest the presence of dynamic neuronal interactions across

multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the rich-

ness of information obtainable when jointly mapping positive and negative BOLD responses

at a whole-brain scale, with ultra-high field fMRI.
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1 | INTRODUCTION

Since the discovery of the blood oxygenation level-dependent (BOLD)

contrast, functional magnetic resonance imaging (fMRI) has been

widely used for in vivo neuroscience. The BOLD contrast is sensitive to

the local concentration of deoxyhemoglobin, which in the brain varies

according to changes in cerebral blood flow (CBF), cerebral blood

volume (CBV), and the cerebral metabolic rate of oxygen (CMRO2). The

coupling mechanisms linking neuronal activity with vascular and meta-

bolic processes are still a topic of intense research and debate (Hillman,

2014). Nevertheless, it is generally accepted that a local increase in

neuronal activity will raise CMRO2, but also typically induce a strong

increase in CBF, resulting in a net positive BOLD response (PBR).

While positive responses to a stimulation paradigm or task are the

most commonly studied, sustained paradigm-locked BOLD signal

decreases are also often found in various brain regions, and have

captured considerable interest (Lauritzen, Mathiesen, Schaefer, &

Thomsen, 2012). This effect, termed negative BOLD response (NBR),
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has been robustly observed in humans during, for example, visual stim-

ulation (Shmuel et al., 2002; Smith, Williams, & Singh, 2004), tactile

stimulation (Hlushchuk & Hari, 2006; Kastrup et al., 2008; Klingner,

Hasler, Brodoehl, & Witte, 2010) and motor tasks (Hamzei et al., 2002;

Stefanovic, Warnking, & Pike, 2004). Cortical areas exhibiting NBRs are

often found in close proximity to positively-responding regions (Shmuel

et al., 2002), or symmetrically in the opposite hemisphere, such as in

somatosensory stimulation or motor tasks (Hlushchuk & Hari, 2006;

Mullinger, Mayhew, Bagshaw, Bowtell, & Francis, 2014). NBRs have

also been reported in cortical regions not directly related to the stimu-

lus modality (Gonzalez-Castillo et al., 2015), such as in auditory areas

during visual stimulation, and vice-versa (Laurienti et al., 2002), and

also in regions coinciding with the default-mode network (DMN)

(Mayer, Roebroeck, Maurer, & Linden, 2010; van der Zwaag, Marques,

Hergt, & Gruetter, 2009b).

Due to the complex nature of the BOLD contrast, NBR interpreta-

tion has motivated intense debate, with possible underlying mecha-

nisms including local neuronal “deactivation” (decreases in excitatory

activity and/or increases in inhibitory activity), passive hemodynamic

effects (“vascular steal” from activated nearby regions), or combinations

of both (Mullinger et al., 2014; Wade, 2002). Fractional changes in cer-

ebrospinal fluid (CSF) volume, creating fluctuations anti-correlated to

grey matter BOLD responses, are also thought to underlie NBRs that

can often be observed in certain brain areas bordering CSF compart-

ments (Bianciardi, Fukunaga, van Gelderen, de Zwart, & Duyn, 2011;

Bright, Bianciardi, de Zwart, Murphy, & Duyn, 2014; Thomas, Liu, Park,

van Osch, & Lu, 2014). While a number of studies have identified vas-

cular steal effects or suggested the existence of central mechanisms for

CBF regulation, competing with local demands (Smith et al., 2004;

Vafaee & Gjedde, 2004), considerable evidence suggests a dominant

influence of local neuronal activity in the generation of cortical NBRs.

Negative responses have been found strongly coupled to decreased

CMRO2 in the visual cortex (Pasley, Inglis, & Freeman, 2007; Shmuel

et al., 2002), primary motor cortex (Stefanovic et al., 2004) and DMN

(Lin, Hasson, Jovicich, & Robinson, 2011), and with psychophysiological

measures of functional inhibition in somatosensory (Kastrup et al.,

2008) and motor studies (Hamzei et al., 2002). Studies combining fMRI

with local electrophysiology measures have provided direct evidence of

neuronal deactivation, including local field potential and spiking

decreases in primate visual cortex (Shmuel, Augath, Oeltermann, & Log-

othetis, 2006) and rat somatosensory cortex (Boorman et al., 2010).

Furthermore, NBR amplitudes in the visual cortex, auditory cortex and

DMN have been found to correlate with pre-stimulus alpha-band EEG

power (Mayhew, Ostwald, Porcaro, & Bagshaw, 2013), and sensorimo-

tor NBRs have been related to increased mu-band power and evoked

potential amplitudes (Mullinger et al., 2014).

The association of NBRs with local neuronal deactivation, even

without fully excluding hemodynamic contributions, is an important

landmark for fMRI. Under visual stimulation, results from large single-

subject datasets have unveiled widespread sustained NBRs in more

than 50% of all grey matter (Gonzalez-Castillo et al., 2015). With both

positive and negative BOLD responses demonstrating functional signif-

icance, their joint characterization is likely to yield richer descriptions of

the neuronal interactions occurring in the brain. Relevant insights

include not only response localization, but also their temporal dynamics

and stimulus dependence. For instance, studies using visual stimuli of

varying intensity and duration have reported a tight covariation

between PBRs and NBRs in the visual cortex, for both amplitude and

temporal profile (Shmuel et al., 2002). In the somatosensory cortex,

ipsilateral NBRs to median nerve stimulation were also found to inten-

sify monotonically with stimulus strength (Klingner et al., 2010). How-

ever, ipsilateral NBRs to prolonged (20 s) tactile stimulation have been

shown to decay faster than contralateral PBRs (Hlushchuk & Hari,

2006), and NBRs to median nerve stimulation revealed relevant differ-

ences in onset and peak timing relative to the PBR (Klingner et al.,

2011). Because these observations were made for NBRs and PBRs

occurring in distinct brain regions, the observed temporal differences

could also be partially caused by region-specific differences in hemody-

namic coupling or in the BOLD response habituation, not necessarily

specific to the type of response (positive or negative). Nevertheless, in

the former study (Hlushchuk & Hari, 2006), somatosensory NBRs to

ipsilateral hand stimulation were also found to return to baseline sub-

stantially earlier than PBRs to contralateral stimulation occurring in the

same brain region, and this was observed in either hemisphere. There-

fore, these observations may effectively reflect underlying differences

in the temporal dynamics of neuronal activations and deactivations, or

differences in hemodynamic coupling that may have a response-

specific contribution (Mullinger et al., 2014), which become more evi-

dent with prolonged stimulation.

While numerous questions remain to be investigated, the study of

BOLD responses, particularly negative, is often limited by their typically

low amplitude, which can compromise response detection and charac-

terization. The pursuit of stronger magnetic fields for fMRI, offering

large gains in functional sensitivity (van der Zwaag et al., 2009a), offers

a promising route to mitigate this limitation. As an additional benefit,

the shorter venous T�
2 at higher field strengths such as 7 Tesla (Yacoub

et al., 2001) grants a lower sensitivity to vein contributions, which can

introduce biases in response characterization and localization (Shmuel,

Yacoub, Chaimow, Logothetis, & Ugurbil, 2007; Turner, 2002), includ-

ing NBR-specific confounds (Bianciardi et al., 2011).

The aim of this work was to study the positive and negative BOLD

responses elicited by visual stimulation in various regions across the

brain, in humans, taking advantage of the high sensitivity of fMRI at 7T.

Visual stimulation was performed with flickering checkerboards for

periods of varying duration (4–40 s), while whole-brain fMRI was con-

ducted at high spatial resolution (1.5 mm), especially relevant to study

subcortical areas like the lateral geniculate nucleus (LGN), and small

cortical regions such as the primary auditory cortex. Responses in visual

and auditory cortex were also further investigated under visual stimula-

tion of varying contrast (2%–80%). The study therefore extends

beyond previous efforts in identification and characterization of PBRs

and NBRs to visual stimulation (Laurienti et al., 2002; Shmuel et al.,

2002), both in terms of spatial coverage and the range of tested stimu-

lus durations. To further improve response estimation, a procedure for

segmentation and exclusion of large draining vein contributions was

also implemented in the analysis, benefitting from the high spatial
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resolution and short venous T�
2 at 7T, and additional improvements

were achieved via independent component analysis (ICA)-based

denoising of the data.

2 | MATERIALS AND METHODS

This work was approved by the institutional review board of the local

ethics committee, and involved the participation of 20 healthy volun-

teers (aged 23 6 4 years old, 13 male/7 female), who provided written

informed consent prior to the experiment. One half of the group par-

ticipated in the main part of the work, comprising the whole-brain map-

ping of responses to visual stimulation, and analysis of their

dependence on stimulus duration (hereafter referred to as “Duration

study”). The second half of the group participated in an additional study

focused on the responses in visual and auditory regions, analyzing their

dependence on stimulus contrast (referred to as “Contrast study”).

2.1 | Data acquisition

MRI data were acquired on a Magnetom 7T/68 cm head scanner (Sie-

mens, Erlangen, Germany), equipped with AC84 head gradients

(80 mT/m max. gradient strength, 333 T/m/s max. slew-rate) and a 32-

channel receive/single-channel transmit head coil (Nova Medical, Wil-

mington, MA, USA). For the Duration study, functional data were

acquired using a simultaneous multi-slice (SMS) 2D GE-EPI sequence,

with TR/TE 5 2000/25 ms, a 5 718, 146 3 146 matrix size with

1.5 mm isotropic spatial resolution, 3,114 Hz/px readout bandwidth,

74 axial slices with 23 SMS acceleration and 1=2 field-of-view (FOV)

CAIPI shift (Setsompop et al., 2012), 23 in-plane GRAPPA acceleration

(anterior-posterior direction) and 7/8 partial Fourier undersampling.

The resulting 11.1 cm-thick axial imaging slab allowed for whole-brain

coverage excluding only part of the cerebellum. For each subject, an

additional five-volume scan was performed with reversed phase encod-

ing direction (posterior-anterior), for subsequent correction of

susceptibility-induced EPI distortions. T1-weighted anatomical data

were acquired with a 3D MP2RAGE sequence (Marques et al., 2010)

with TR/TI1/TI2/TE 5 5500/750/2350/1.87 ms and 1 mm isotropic

spatial resolution. For the Contrast study, due to unavailability of the

SMS-EPI protocol, functional data were acquired using a standard 2D

multi-slice GE-EPI sequence with the same volume TR, spatial resolu-

tion and in-plane acceleration, but without acceleration in the slice-

encoding direction, resulting in a more restricted imaging slab (4.5 cm)

with 30 slices. The slab was placed in an axial-oblique orientation to

cover both the primary visual cortex and primary auditory cortex.

2.2 | Functional paradigms

All functional runs employed a series of blocks consisting of a visual

stimulation period followed by a baseline period (fixation). The stimuli

were delivered with an LCD projector to a screen placed at the back of

the bore, and consisted of grey-scale checkerboards flickering at 8 Hz

(158 FOV central-field presentation, 12 segments across the diameter),

with the total luminance kept equal to baseline periods. A red cross

was shown at the center of the FOV at all times, with slight changes in

color occurring twice per block at random instants; subjects were

instructed to focus on the cross and report color changes via a button

press.

For the Duration study, each subject underwent two distinct para-

digms: a functional localizer (FLoc) and a duration-varying paradigm

(FDur). FLoc runs comprised 10 blocks of 10 s stimulation followed by

30 s rest; checkerboards were presented at 20% contrast. FDur runs

comprised 30 blocks of stimulation (at 20% contrast) lasting for 4, 10,

16, 22, 30, or 40 s, followed by 30 s rest; each duration was repeated

five times throughout the run, in randomized order, with the stimulus

onset systematically jittered between 0 and 3.2 s, in steps of 0.8 s. For

the Contrast study, the subjects underwent a functional localizer (FLoc)

and a contrast-varying paradigm (FCont). The FLoc runs comprised 8

blocks of 10 s stimulation (at 20% contrast) followed by 20 s rest.

FCont runs comprised 32 blocks of 10 s stimulation and 20 s rest, with

each block of stimuli presented at one of four different contrast levels:

2%, 5%, 20%, or 80%; each level was repeated eight times throughout

the run, in randomized order. These contrast levels were set based on

preliminary tests, to cover a well-distributed range of (positive)

response amplitudes in the visual cortex. In both studies, the FLoc run

was used to unbiasedly identify regions of interest (ROIs) with signifi-

cant responses to stimulation, which were then used for response aver-

aging in FDur or FCont data. The protocol order was counter-balanced

across subjects, and individual runs were separated by pauses of sev-

eral minutes.

2.3 | Data analysis

Data analysis was mainly performed in Matlab (Mathworks, Natick MA)

using routines developed in-house, combined with tools from the

FMRIB Software Library (FSL v5.0, Oxford, UK) and the FreeSurfer

software suite (v5.1.0, Charlestown, MA, USA).

2.3.1 | Pre-processing

Functional analysis began with motion correction (6 degrees of free-

dom, referenced to the middle volume of the series; Jenkinson, Bannis-

ter, Brady, & Smith, 2002), slice-timing adjustment (set to the middle of

each TR, via linear interpolation), brain segmentation (Smith, 2002) and

Gaussian spatial smoothing (FWHM 5 2 mm). For each run, the refer-

ence volume used for motion correction was bias field-corrected with

FSL-FAST (Zhang, Brady, & Smith, 2001), and used to estimate the spa-

tial registration parameters from FLoc to FDur or to FCont (linear, 12

degrees of freedom [Jenkinson et al., 2002]), as well as from FLoc to

the anatomical space (using boundary-based registration with 12

degrees of freedom [Greve & Fischl, 2009]). The anatomical image of

each subject entered the standard FreeSurfer segmentation pipeline,

yielding a segmentation of the cortical surfaces. No global signal sub-

traction or regression steps were applied at any point of the analysis.

2.3.2 | Large vein segmentation

The unsmoothed, bias field-corrected reference volume of each time-

course was also used for a semi-automatic segmentation of large
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draining veins. This was performed via multiscale vessel enhancement

filtering (Frangi, Niessen, Vincken, & Viergever, 1998), an image-based

technique that uses second-order (curvature) information to highlight

vessel-like structures (Supporting Information Figure S1). Originally

proposed for more dedicated angiography modalities, variants of this

approach have been successfully adapted for high-spatial resolution

gradient-echo fMRI data, at 3T (Koopmans, Barth, & Norris, 2010). For

our 1.5 mm-resolution, 7T EPI data, the original filter (Frangi et al.,

1998) was found to perform well, with empirically-determined parame-

ters a 5 b 5 0.5, c 5 0.02, and covering spatial scales of 0.5–3.0 mm.

2.3.3 | ICA-based confound extraction

For each subject and paradigm, the pre-processed functional data were

decomposed by ICA using the extended infomax algorithm (Lee, Giro-

lami, & Sejnowski, 1999), imposing statistical independence in the spa-

tial dimension. Data decomposition was preceded by a dimensionality

reduction step using principal component analysis (PCA), where the

most important components explaining 95% of total data variance

were kept. Following ICA, the resulting sources were manually

reviewed in search for relevant confounds, mainly related to subject

motion (Kelly et al., 2010) and physiological noise (Bianciardi et al.,

2009). For each dataset, the five most relevant spurious sources were

selected, and their timecourses were included as confounds in subse-

quent regression analyses. This number of ICs was empirically found to

yield a reasonably representative set of the typical artifact sources (e.g.,

cardiac, respiratory, residual motion, reconstruction-related), while

remaining fairly conservative, which was desirable given the many fea-

tures of negative BOLD responses that are still poorly understood.

2.3.4 | General linear model analysis

All pre-processed functional datasets underwent general linear model

(GLM) analysis (Worsley & Friston, 1995), for the purpose of response

localization (FLoc) and timecourse denoising (FDur and FCont). The vis-

ual paradigms were modeled as boxcar timecourses, convolved with a

canonical hemodynamic response function (single-gamma function

(Jezzard, Matthews, & Smith, 2001)). In FDur and FCont runs, each

duration or contrast was modeled as a separate regressor. The full

model comprised the visual paradigm regressors (convolved boxcars

and their temporal derivatives), the button pressing task (“stick time-

course” matching the timings of button pressing, HRF-convolved),

slow-drift regressors (cosine expansion covering periodicities down to

140 s), motion confounds (three translation, three rotation time-

courses), and five ICA-derived confounds. For all subjects and runs, the

respective models were checked for possible collinearities between the

visual paradigm and confound regressors. The visual response regres-

sors exhibited variance inflation factors below 3.6 for all models (Mum-

ford, Poline, & Poldrack, 2015), and pairwise correlations with the

confound regressors below 0.3 (one subject at 0.4). No regressor

orthogonalization was applied. After GLM regression, for the FLoc data

of each subject, a T-score map was estimated from the b map for the

visual response regressor (here being the explanatory variable of inter-

est), quantifying the significance of voxel responses to the visual

paradigm.

2.3.5 | Visual response mapping

For the cortex, the mapping of responses to the FLoc paradigm was

carried out at the subject group level, on a cortical surface space cre-

ated with FreeSurfer. Only FLoc data from the Duration study were

used for this purpose, due to its whole-brain coverage. First, for

each subject, the FLoc b map for the visual response regressor was

B0-unwarped using FSL-TOPUP (Andersson, Skare, & Ashburner,

2003), and then brought to the anatomical space. The b-values were

sampled by FreeSurfer throughout the cortex region, averaging

across its depth, to yield a cortical surface representation of the sub-

ject’s b map. The individual subject surface maps were then warped

to a group average surface space, and jointly tested for statistical

significance using Monte Carlo-based, cluster-wise correction for

multiple comparisons, as implemented in FreeSurfer (Hagler, Saygin,

& Sereno, 2006; cluster-forming threshold |Z| > 1.6, cluster signifi-

cance p < .01).

2.3.6 | ROI definition and response averaging

For the cortex, a number of ROIs were defined based on the significant

clusters identified by group-level analysis. At the individual subject

level, the FLoc T-score map was also analyzed for statistical significance

using topological false-discovery rate (FDR) inference (Chumbley,

Worsley, Flandin, & Friston, 2010; cluster-forming threshold |T| > 2.3,

FDR 5 5%). The cluster map from group-level analysis was then

brought to the subject space and compared to the FDR-thresholded T-

score map, and the matching clusters were selected from the latter by

visual inspection. This procedure was adopted to improve spatial speci-

ficity when localizing each cortical ROI in each subject, mitigating the

impact of cross-subject misalignments and anatomical variability. A sec-

ond purpose of the subject-level cluster inference was the identifica-

tion of additional, sub-cortical ROIs. This was performed by visual

inspection, whereby only significant clusters found consistently across

subjects were selected. For the Contrast study, which employed a more

restricted FOV, only the ROIs identified in visual and auditory cortices

were considered.

Following cluster selection, each subject’s ROI set was warped

from FLoc to the FDur or FCont spaces, and any voxels belonging to

segmented veins were excluded. No information from FDur or

FCont was used in ROI definition, except for the vein segmentation

masks. Prior to ROI response averaging, FDur and FCont data were

denoised by removing drift, motion and ICA confounds, based on

the corresponding GLM fits. Voxel timecourses were then

baseline-corrected and normalized to a % signal change scale, and

averaged across repetitions, ROIs, and subjects. For the FDur data-

set, the jittered responses of each subject and trial were first real-

igned according to their relative timings, yielding an effective

temporal resolution of 0.8 s, and then fit with a b-spline basis set

to yield trial-average responses to each duration and subject. The

order of the b-spline set was chosen so as to adequately preserve

the response shapes, while excluding high-frequency noise across

the aligned jittered trials.
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3 | RESULTS

3.1 | Positive and negative BOLD response mapping

The FLoc group-level analysis revealed multiple brain regions with sig-

nificant PBRs or NBRs to visual stimulation (Figure 1, Table 1).

Positively-responding regions included areas V1–V4 of the visual cor-

tex, the LGN of the thalamus, the superior colliculus, and pre-motor

cortex. Negatively-responding regions included sub-parts of the pri-

mary visual cortex, primary auditory cortex, regions typically attributed

to the DMN (angular gyri, precuneus and posterior cingulate gyri,

medial prefrontal gyrus), and to somatosensory association cortex

(superior parietal gyrus and superior precuneus gyrus, within the supe-

rior parietal lobule; Table 1). For the cortex, the identified clusters

occupied 19.7% of the total cortical area—16.0% by PBRs, and 3.7% by

NBRs. For some of the ROIs, not every subject exhibited a cluster on

the individual T-map matching the region identified at group level; this

was observed for the DMN in 2/10 subjects, the pre-motor cortex in

2/10 subjects, the superior parietal lobule in 2/10 subjects, and the

superior colliculus in 3/10 subjects. For these cases, the subjects were

excluded from the averaging for the respective ROI.

3.2 | Positive and negative BOLD stimulus
dependence

Under varying stimulus duration (FDur paradigm), the group-average

BOLD responses exhibited clear stimulus dependence, with response

duration tending to increase with stimulus duration in all ROIs (Figure

FIGURE 1 Brain-wide localization of positive and negative BOLD responses to the functional localizer paradigm (FLoc). Top: cortical
regions identified by group-level analysis, including the occipital pole/superior occipital gyrus (1), superior/inferior pre-central sulcus (4),
cuneus gyrus/calcarine sulcus (5), superior temporal gyrus (6), precuneus/posterior cingulate gyrus, angular gyrus and anterior cingulate
gyrus/frontal gyrus (7), and superior parietal lobule (8); the map, rendered with FreeSurfer, is presented in -s log10 (p value), where s is the
sign of the associated response (ex: a value of 61.3 corresponds to p 5 .05). Bottom: identification of the corresponding regions in an
example subject, along with two sub-cortical regions: LGN (2, orange) and superior colliculus (3, yellow); each region mapped in the first
row is labeled with a color index in the second row [Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 Brain regions with significant positive or negative BOLD responses to visual stimulation

Sign Anatomical region Brodmann area Putative function Peak Z (group level)

1 Occipital pole
Sup. occipital sulcus

17,18,19 Visual 15.7

1 Precentral sulcus 6 Pre-motor (behavior control,
movement planning)

14.9

1 Lat. geniculate nucleus – Visual –

1 Sup. colliculus – Oculomotor control –

2 Cuneus gyrus
Calcarine sulcus

17,18,19 Visual 24.0

2 Sup. temporal gyrus 41,42 Auditory 23.1

2 Angular gyrus 39 Default mode network 24.4

2 Precuneus gyrus
Post. cingulate gyrus

23 Default mode network 23.7

2 Medial prefrontal gyrus 10 Default mode network 24.0

2 Sup. parietal lobule 5,7 Somatosensory association 24.6

Note: Cortical regions were identified at the group level by cluster-wise inference (cluster-forming threshold |Z| > 1.6, cluster p < .01, FWE-corrected);
anatomical labeling was based on the FreeSurfer atlas. Subcortical regions were identified by visual inspection of cluster-thresholded, FWE-corrected T-
score maps at the individual subject level.

FIGURE 2 Group average BOLD responses to 20%-contrast checkerboard stimulation with varying duration (FDur), in multiple brain
regions. The response curves represent average responses across subjects, with error margins representing the respective standard error;
vertical lines mark the instant of stimulus cessation for each duration [Color figure can be viewed at wileyonlinelibrary.com]
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2). Overall, no differences in response properties were found between

hemispheres, and as such the two hemispheres were analyzed together

for each ROI; the same was observed for the various regions of the

DMN, which were thereby also merged.

Certain ROIs were visibly less affected by stimulus duration than

others. In particular, the NBR regions tended to exhibit less sustained

responses than the visual cortex PBR, especially evident for the longer

stimulation conditions (Figure 2). Response duration was quantified by

normalizing the response amplitude and estimating the area under the

response curve for each stimulus duration, excluding the under/over-

shoot and subsequent periods. Based on this measure, the visual cortex

PBR duration was found to increase close to linearly with stimulus

duration (offset 5 4.2, slope 5 1.8 s21; Pearson coefficient r 5 .90

with p < .01, Figure 3a). In general, duration dependence was found

statistically significant for all PBR regions, as well as the visual and audi-

tory cortex NBRs (p < .05 for the effect of stimulus duration, balanced

one-way ANOVA), but not for the DMN and superior parietal lobule.

The response areas for each ROI were further compared to the visual

cortex PBR across stimulus durations, after being normalized to the

respective values for 10 s stimulation (Figure 3b). No significant devia-

tions between any ROI response areas and the visual cortex PBR were

found for stimuli up to 16 s; however, for longer stimulus durations,

the response areas from all NBR regions were found significantly

smaller than that of the visual cortex PBR (p < .01, balanced one-way

ANOVA).

The BOLD response time of return to baseline and time to peak

were also estimated for each subject, duration and ROI. These timings

were obtained by modeling the individual responses with a combina-

tion of inverse logit functions (Lindquist & Wager, 2007), to capture

the general response shapes while excluding smaller artifactual fluctua-

tions, for a more robust estimation. As observed for the response areas,

the time of return to baseline increased with stimulus duration in all

regions (Figure 4a). A linear increase with stimulus duration was again

found for the visual cortex PBR (offset 5 12.9, slope 5 0.9 s21;

r 5 .95 with p < .01). In NBR regions, the return to baseline tended to

occur earlier compared to the visual cortex PBR, especially for stimuli

above 16 s (p < .01 for the visual cortex NBR and superior parietal

lobule NBR, balanced one-way ANOVA). The time to peak was, in gen-

eral, found to increase moderately with stimulus duration, up to around

30 s durations (Figure 4b). Most regions peaked at approximately the

same time as the visual cortex PBR, with three exceptions: the auditory

cortex NBR tended to peak approximately 4.3 s later, consistently

across stimulus durations (p < .01, balanced one-way ANOVA); the

pre-central sulcus PBR and DMN NBR both tended to peak increas-

ingly later than the visual cortex PBR for increasing stimulus duration

(p < .05, balanced one-way ANOVA).

Under contrast-varying stimulation (FCont paradigm), group-

average BOLD responses exhibited clear stimulus dependence in all

three targeted ROIs (visual cortex PBR, visual cortex NBR and auditory

cortex NBR), with response peak amplitudes increasing monotonically

FIGURE 3 Group average BOLD response durations to 20%-contrast checkerboard stimulation with varying duration (FDur), in multiple brain
regions. Each response duration was estimated as the area under the response curve. (a) Duration of the visual cortex PBR as a function of stimu-
lus duration. (b) Response durations in the other identified regions of interest, plotted as a function of the visual cortex PBR duration, after nor-
malization to the response area at 10 s stimulation; the diagonal grey line marks the identity function. All response durations represent averages
across subjects, with error bars representing the standard error [Color figure can be viewed at wileyonlinelibrary.com]
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with checkerboard contrast (Figure 5a). The contrast dependence of

response amplitudes was statistically significant for all ROIs (p < .05 for

the effect of stimulus contrast, balanced one-way ANOVA). NBRs were

then compared to the visual cortex PBR by normalizing each set rela-

tive to its 20% contrast response amplitude. This procedure revealed a

linear correlation between both visual and auditory NBR amplitudes

FIGURE 4 Group average BOLD response properties as a function of stimulus duration (FDur), in multiple brain regions. Individual subject
responses were modeled as a combination of inverse logit functions (Lindquist & Wager, 2007) for a more robust estimation of (a) the time
of return to baseline, and (b) the time to peak, both measured relative to the onset of stimulation. All estimates represent averages across
subjects, with error bars representing the standard error. Because they do not depend on the response amplitudes, the response timings did
not need to be normalized (as performed for response areas). Instead, the visual cortex PBR curve is also shown in light grey in every panel,
for direct comparison with each region [Color figure can be viewed at wileyonlinelibrary.com]
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and the visual PBR amplitude, at least for contrast levels up to 20%

(Figure 5b). Within this range, pooling together the response ampli-

tudes from all subjects and the three lowest contrast levels, without

normalization, a linear relationship was observed between the visual

cortex PBR amplitude and both visual cortex NBR (r 5 –0.50, with

p < .05) and auditory cortex NBR amplitudes (r 5 –0.55, with p < .05).

At 80% contrast, both normalized NBRs displayed a comparable devia-

tion from the PBR, with stronger relative increases in amplitude (Figure

5b). Overall, the two NBR types exhibited a similar dependence on

stimulus contrast, although with the visual NBR achieving larger ampli-

tudes in general.

Overall, for both varying stimulus duration and contrast, the

observed responses exhibited appreciable differences across regions

and stimuli, not only in amplitude and duration, but also in shape. Nota-

bly, response under/overshoots could be observed in most regions

(Figure 2), but not all (superior colliculus and pre-central sulcus PBRs).

Where present, the average response under/overshoots tended to

occur later for longer stimulus durations. Although no clear differences

in under/overshoot peak timing could be found across regions, the

peak amplitude was notably stronger in both visual cortex responses

than elsewhere (Supporting Information Figure S2). Interestingly, the

under/overshoot peak amplitude varied considerably across stimulus

durations, and was particularly weak in visual and auditory regions for

the 10 s-stimuli; consistently, in the contrast-varying data, which

employed the same duration, the observed under/overshoots were

likewise relatively weak (Figure 5). The trends observed for the main

response amplitudes in FCont were, nevertheless, fairly robust to minor

shape variations; in particular, an alternative quantification of these

trends based on the response areas, instead of peak amplitude, yielded

the same relationship between PBRs and NBRs (results not shown).

3.3 | Grey matter—vein separation

To assess the impact of vein contributions to BOLD response charac-

terization, the voxels identified as large draining veins were analyzed

separately and compared to those attributed to grey matter, in the Con-

trast study. Visual inspection of FLoc Z-score maps across subjects

identified several small clusters (1.5–4.5 mm diameter) dominated by a

central Z-score peak, spatially coincident with a large draining vein (Fig-

ure 6a). Consistent with previous reports at 7T (Yacoub et al., 2001),

responses to visual stimulation from vein-identified regions were con-

siderably stronger than in grey matter — in visual cortex, for instance,

the average venous baseline signals were approximately 0.63 those of

grey matter, yet their PBRs displayed absolute signal changes that

were 1.53 stronger, resulting in even stronger % signal changes

(approximately 2.63 higher than in grey matter). Furthermore, visual

cortex PBRs were visibly delayed in veins relative to grey matter (Fig-

ure 6b). While the available temporal resolution did not allow for

proper quantification of the temporal delay, this effect was robustly

observed in visual cortex PBRs for all contrast levels, as well as in

NBRs to higher contrasts. Finally, although roughly expressing similar

trends, the stimulus dependence of venous responses was considerably

more irregular than in grey matter, especially for NBRs (Figure 6c).

Upon merging vein and grey matter ROIs for each response type (as

would happen if no vein separation had been applied), response ampli-

tudes remained roughly similar to those of “pure” grey matter for visual

PBRs and NBRs, but showed relevant perturbations for auditory cortex

NBRs (results not shown). Concordantly, in the merged ROIs, the effect

of stimulus contrast became less statistically significant in general

(larger p values).

3.4 | ICA-assisted denoising

The impact of ICA-assisted denoising on data quality was assessed

based on both the variance explained by ICA confounds and their

effect on block-by-block response variability, for FLoc data. Systemati-

cally across subjects, the ICA decomposition produced components

that could be clearly identified based on their spatial distribution and/

or temporal properties, such as paradigm-related sources, resting-state

networks, and physiological noise sources related to cardiac or respira-

tory processes (Supporting Information Figure S3).

The proportions of data variance explained by the paradigm, head

motion and ICA confounds were estimated based on the adjusted coef-

ficient of determination (R2
adj) obtained from the residuals of GLM anal-

ysis (Jorge, Figueiredo, van der Zwaag, & Marques, 2013). Across

subjects and brain regions, the ICA confounds proved to explain signifi-

cant amounts of data variance (p < .01, one-sample t tests), averaging

approximately 17% in visual cortex PBR ROIs, 16% in visual cortex

FIGURE 5 Group average BOLD responses to 10 s-checkerboard
stimulation with varying contrast (FCont). (a) Visual cortex PBRs
(top–left), visual cortex NBRs (top–right) and auditory cortex NBRs
(bottom–right) to four increasing contrast levels. (c) Visual and
auditory cortex NBR amplitude as a function of visual cortex PBR
amplitude, after normalization of each response to the amplitude at
20% contrast; the diagonal grey line marks the identity function. All
response curves and amplitudes represent averages across stimula-
tion blocks and subjects, with error margins and bars representing
the standard error across subjects [Color figure can be viewed at
wileyonlinelibrary.com]
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NBR ROIs, and 15% in auditory cortex NBR ROIs, for example (Figure

7a). These proportions of explained variance were generally larger than

those achieved by the head motion confounds, and even larger than

those of the paradigm responses for the weaker NBRs, such as the

auditory cortex case. To assess block-by-block response variability, for

each subject, considering ROI-averaged BOLD timecourses, the stand-

ard deviation across blocks was computed for each timepoint of the

response window, and then averaged across timepoints. On average,

the inclusion of ICA confounds in the regression models led to further

reductions in block-by-block response variability compared to the use

of motion regressors alone. Together, these confounds significantly

reduced variability by approximately 19% in visual cortex PBR ROIs,

17% in visual cortex NBR ROIs, and 19% in auditory cortex NBR ROIs,

for example (p < .01, one-sample t tests; Figure 7b).

4 | DISCUSSION

The present study explored the high functional sensitivity available at

7T, combined with accelerated fMRI acquisition, vein segmentation

and ICA denoising techniques, to map and characterize both positive

and negative BOLD responses to visual stimulation throughout the

brain. Multiple areas exhibiting significant responses to visual stimula-

tion were found, and their dependence on stimulus duration was

observed to differ significantly across regions. The exclusion of large-

vein contributions and ICA-derived confounds was shown to signifi-

cantly improve response estimation.

4.1 | Positive and negative BOLD response mapping

Recent fMRI studies based on large single-subject datasets have

revealed that even passive checkerboard stimuli can elicit sustained

BOLD responses in more than 50% of all grey matter—with roughly

41% positive, and 13% negative responses (Gonzalez-Castillo et al.,

2015). This compelling observation suggests that valuable new insights

may be achieved through the mapping of both PBRs and NBRs on a

whole-brain scale, even for fairly basic stimuli, opening new perspec-

tives for the study of brain function. However, such descriptions

required long acquisitions with hundreds of block repetitions per sub-

ject, limiting a more widespread applicability. The large gains in func-

tional sensitivity achieved at higher field strengths can help to mitigate

this obstacle, which is particularly decisive for NBR detection. A trade

of sensitivity for spatial resolution can also help studying small struc-

tures such as the LGN, and negative responses in small cortical regions,

such as the auditory cortex NBR, will crucially benefit from both sensi-

tivity and spatial specificity. Recent developments in slice-accelerated

2D-EPI have brought excellent trade-offs between sensitivity, spatial

FIGURE 6 The influence of large draining veins on response localization and temporal characterization. (a) GE-EPI data from a single sub-
ject (left), the respective vein mask obtained with multiscale vessel enhancement filtering (center), and a thresholded T-score map for the
visual cortex response to the functional localizer; yellow arrows indicate two veins which are positioned in the center of activation clusters,
exhibiting large Z-scores. (b) Group average visual cortex PBRs to checkerboard stimuli of 20% contrast and 10 s duration, in grey matter
(blue) and segmented vein voxels (red). (c) Group average peak amplitude of visual and auditory cortex NBRs to varying contrast level, in
grey matter and in segmented veins; the horizontal axis (stimulus contrast) is presented in logarithmic scale for easier visualization. All
response curves and amplitudes represent averages across stimulation blocks and subjects, with error margins and bars representing the
standard error across subjects [Color figure can be viewed at wileyonlinelibrary.com]
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and temporal resolution (Setsompop et al., 2012), and were exploited

in this work to achieve whole-brain coverage at a reasonable volume

TR of 2 s, with a spatial resolution of 1.5 mm—which matches the spec-

ificity limits estimated for single-condition BOLD response mapping at

7T (Shmuel et al., 2007). In this regime, our checkerboard paradigm

comprising only 10 stimulus repetitions, lasting less than 7 min in total,

revealed significant BOLD responses in almost 20% of grey matter,

with PBRs and NBRs appearing in similar relative proportions to those

found by Gonzalez-Castillo et al. (2015).

The detection of PBRs to visual stimulation in the primary visual

cortex, LGN and superior colliculus is expected, as the first two are well-

known components of the visual pathways, and the latter is involved in

oculomotor control (Guyton & Hall, 2006). NBRs to visual stimuli have

also been reported for regions of the visual cortex (Shmuel et al., 2002)

and auditory cortex (Laurienti et al., 2002). In the DMN, NBRs are often

observed in more demanding cognitive tasks, such as involving arithme-

tic operations (Lin et al., 2011) or working memory (Mayer et al., 2010),

but this is, to our knowledge, the first report of their robust detection in

a passive flickering checkerboard paradigm. Previous studies employing

analogous passive stimuli at 3T have reported NBRs in posterior

cingulate and medial prefrontal cortex (Mayhew et al., 2013), though not

unanimously (Greicius, Krasnow, Reiss, & Menon, 2003), possibly due to

the lower functional sensitivity at this field strength. Other differences

relative to previous reports suggest that the observed responses may

also be considerably specific to the properties of the visual stimuli; for

example, while our basic checkerboard stimuli yielded NBRs in the audi-

tory cortex (similar to the findings of Laurienti et al. (2002)), Kayser, Pet-

kov, Augath, and Logothetis, (2007) found auditory PBRs in monkeys

when watching natural scenes of animal wildlife. This interesting exam-

ple suggests that visual stimuli with contextual significance, and associ-

ated representations in other sensory areas, may trigger different

cognitive mechanisms and multisensory interactions, with noticeable

effects on the observed BOLD responses.

The PBR observed in the pre-central sulcus suggests an involve-

ment of pre-motor cortex in the response to the visual stimuli. While

this region’s functions remain poorly understood, neurons in its ventral

portion are known to respond to visual stimuli appearing in positions

close to the body, possibly related to hand-reaching functions (Gra-

ziano, Yap, & Gross, 1994). Certain parts of pre-motor cortex are also

involved in the association between arbitrary visual stimuli and motor

responses (Brasted & Wise, 2004) and in movement-related decisions

(Deiber et al., 1991). Considering that the subjects were tasked with

focusing on a central cross and pressing a button whenever its color

changed, throughout the paradigm, one could speculate that the pre-

sentation of checkerboards could trigger responses in this region as an

interfering “distracter”, arising as the participant was alert for cross

changes. The occurrence of NBRs in the superior parietal lobule is also,

to our knowledge, a novel finding, although the somatosensory associa-

tion cortex (located in these regions) has previously been found to

respond to changes in ongoing visual stimulation (Downar, Crawley,

Mikulis, & Davis, 2000). On the other hand, this area can also be

involved in visuomotor coordination processes (Deiber et al., 1991).

Thus, these questions could potentially be clarified in future studies by

employing a similar checkerboard paradigm with a different visuomotor

attention task, or none, for example.

Overall, the detection of NBRs in various regions distributed

throughout the brain suggests a functionally-relevant meaning for

these responses. For example, the auditory cortex and DMN are spa-

tially well separated from the visual cortex, and thus their NBRs are

unlikely to be caused by passive “vascular steal” effects—an observa-

tion analogous to those of previous works reporting ipsilateral NBRs to

tactile stimulation (Hlushchuk & Hari, 2006; Kastrup et al., 2008;

Klingner et al., 2010) and to motor tasks (Hamzei et al., 2002; Stefa-

novic et al., 2004). This strengthens the hypothesis of a local neuronal

origin for negative BOLD, or alternatively the existence of long-range

vascular control mechanisms that could modulate CBF across cortical

regions (Smith et al., 2004; Vafaee & Gjedde, 2004).

4.2 | Positive and negative BOLD stimulus

dependence

The stimulus dependence of visual cortex NBRs to visual stimuli has

been previously shown for stimulus duration (up to 16 s) and intensity

FIGURE 7 The impact of the different subsets of regressors
included in GLM analysis, exemplified for the functional localizer
data (FLoc) in visual cortex PBR, visual cortex NBR and auditory
cortex NBR regions. (a) Average percentages of data variance
explained by the visual paradigm (green), button pressing to track
changes in the central cross (purple), head motion (red) and ICA-
based confounds (blue). (b) Block-by-block response variability,
expressed in % signal change, before (blue) and after removal of
head motion regressors (orange) and head motion1 ICA-based con-
founds (green). The bars indicate averages across subjects, with
error margins representing the respective standard error. The var-
iance that remains unaccounted for is putatively attributed to
residual artifact contributions, spontaneous activity and trial-by-
trial fluctuations (Mayhew et al., 2016), and thermal noise. Low fre-
quency (drift) contributions, as modeled within the GLM, were
excluded prior to these estimations, and therefore do not contrib-
ute to the total variance or variability here presented [Color figure
can be viewed at wileyonlinelibrary.com]
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(Shmuel et al., 2002). As for NBRs to visual stimulation in other brain

regions (cross-modal responses), their dependence on stimulus proper-

ties remains largely unexplored, and was here studied for the first time

for stimulus duration, and in the case of the auditory cortex, for stimu-

lus contrast as well. Visual and auditory cortex NBR amplitudes were

found to increase with stimulus contrast, and NBR durations were also

generally found to increase with stimulus durations up to 16 s, in all

studied regions. Under the hypothesis of local neuronal deactivation,

these findings would imply that deactivation increases with stimulus

intensity and is more prolonged with longer stimuli. Alternatively, the

long-range CBF control hypothesis could either imply a stimulus-

dependent CBF reduction, without changes in neuronal activity, or an

unvarying suppression of CBF changes with stimulus-dependent

increases in neuronal activity.

For stimulus durations of 16 s and above, all NBRs tended to be

less sustained than the visual cortex PBR (Figure 2), leading to growing

deviations from linear covariation (Figure 3). The return to baseline of

NBRs also tended to occur earlier than that of the visual cortex PBR,

and various regions exhibited significantly different behaviors in

response peak timing, both stimulus-dependent and independent.

These phenomena have not been reported in previous work studying

the visual cortex NBR, which explored stimulus durations only up to

16 s (Shmuel et al., 2002). On the other hand, in tactile stimulation

studies using longer stimuli (20 s), ipsilateral somatosensory cortex

NBRs have likewise been found to decay faster than contralateral

PBRs (Hlushchuk & Hari, 2006). The mechanisms underlying the

observed effects cannot be fully understood based on these data alone;

nevertheless, they suggest either the existence of differences between

the hemodynamic coupling mechanisms of PBRs and NBRs, which

become more evident for sufficiently long stimuli, or the possibility that

neuronal deactivation does not closely follow the same temporal

dynamics of neuronal activation. The possibility of hemodynamic cou-

pling differences between PBRs and NBRs has been previously sug-

gested by work in both visual (Shmuel et al., 2002) and median nerve

stimulation (Mullinger et al., 2014), arising as differences in the ratio of

DCMRO2 to DCBF, but has not been found in the motor cortex (Stefa-

novic et al., 2004) or DMN (Lin et al., 2011). This latter reference,

focused on the DMN, also employed fairly long task durations, albeit

with a more cognitively-demanding task than that used in this work. It

is important to note that, because the observed responses were

located in different regions across the brain, the deviations found in

their temporal dynamics could, at least partially, be due to regional dif-

ferences in hemodynamic coupling, namely regarding BOLD response

habituation, and not necessarily specific to the type of response (posi-

tive or negative). While one could attempt to use different stimuli to

elicit and study PBRs in the same regions where NBRs were identified

for this work, this would still not fully disentangle this uncertainty,

because habituation mechanisms can also be stimulus specific. Never-

theless, for the range of stimuli explored in this work, all PBR regions

exhibited response durations that closely followed the stimulus dura-

tion, showing no discernible signs of habituation (Figure 3a,b and 4a).

In contrast, all NBR regions tended to deviate from this behavior,

suggesting that the observed effects are more likely to be response-

related, rather than purely region-specific.

Following the hypothesis of differences at the level of neuronal

activity, an attenuation of the neuronal deactivation response for lon-

ger stimuli could suggest the existence of mechanisms which downplay

the importance of visual stimuli when these are presented for suffi-

ciently long periods of time. Neuronal responses can suffer from habit-

uation effects for sufficiently long stimuli (Janz, Heinrich, Kornmayer,

Bach, & Hennig, 2001). Here, however, the visual cortex PBR did not

evince signs of habituation (Figure 3a), and the NBRs were found to be

less sustained relative to the PBR itself, implying differences in the

hypothetical adaptation mechanisms attenuating the neuronal deacti-

vation in NBR regions, compared to those attenuating neuronal excita-

tion in PBR regions. Also importantly, for most NBR regions under

study, except possibly the superior parietal lobule, the observed

response curves did not appear to reach a plateau in terms of response

duration, suggesting that, at least for stimulus durations up to 40 s,

such attenuation mechanisms, if present, do not effectively reach a full

suppression of the deactivation response.

Besides region-specific differences in response habituation,

another potential source of variability may have had a relevant impact

on the observed response properties: as shown by Mayhew et al.

(2016), and contrasting with their trial-average relationship (Figure 5),

PBRs and NBRs from different brain regions can exhibit fluctuations in

amplitude across trials that are positively-correlated (i.e., when the PBR

becomes more positive, the NBR also becomes more positive, and

vice-versa). These positively-correlated trial-varying contributions intro-

duce variability on the observed BOLD responses across trials, and

more importantly, they could have a relatively larger impact on the

weaker responses than on the visual cortex PBR, possibly influencing

the observed PBR and NBR relationships. We sought to assess the

potential impact of this confound through numerical simulations, focus-

ing on response area estimation for the weakest response regions

(superior colliculus PBR and auditory cortex NBR), in the presence of

positively-correlated random spurious fluctuations. The BOLD

responses were simulated based on the paradigm regressors, i.e., as if

having the same stimulus dependence in all regions (Supporting Infor-

mation Figure S4a), and the response amplitudes and spurious variabili-

ty were scaled according to the observed data (Figure 2 and Figure 7b).

The presence of spurious contributions was indeed found to exert an

observable effect on the response relationships (Supporting Informa-

tion Figure S4b), and could explain the small deviation observed for the

superior colliculus PBR (Figure 3), which however was not statistically

significant. In contrast, the stronger deviations observed for the NBRs

were well beyond the range of simulated outcomes, and therefore

could not be explained by positively-correlated fluctuations. Neverthe-

less, these results show that such contributions can be an important

source of variability, and could potentially affect PBR-NBR compari-

sons in a systematic manner for certain analyses; they should therefore

not be disregarded in this type of studies.

Under contrast-varying stimulation, response amplitudes showed a

tight correlation between the visual cortex NBR and PBR, for contrast

levels up to 20% (Figure 5b). This is consistent with previous
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observations at similar contrast ranges, up to 40% (Shmuel et al.,

2002). Notably, the auditory cortex NBR was also strongly correlated

to the visual cortex PBR, suggesting similar underlying neuronal inter-

actions for both NBR types, and analogous hemodynamic coupling. At

80% contrast, the visual cortex PBR did show a lower relative increase

than either the visual or auditory cortex NBRs (Figure 5). This interest-

ing behavior could potentially be due to differences in the limits for

response saturation, and could be tested in future work by exploring

even stronger stimulus intensities, which may push both positive and

negative responses to clear saturation plateaus.

Given the steadily-growing body of evidence associating negative

BOLD with true local neuronal deactivation (Boorman et al., 2010;

Mullinger et al., 2014; Pasley et al., 2007; Shmuel et al., 2006), this

hypothesis is a strong candidate under which to interpret the observed

NBRs and their dependence on basic stimulus properties. Under that

assumption, these results point to the existence of highly dynamic

cross-modal neuronal interactions that depend on stimulus intensity

and duration, occurring in various regions of the brain, even under pas-

sive viewing of basic visual stimuli. Future studies monitoring both

BOLD and electrophysiological activity, in both PBR and NBR regions,

may bring valuable additional insights to clarify this idea, and to further

our current understanding of the neurovascular coupling mechanisms

underlying the BOLD signal in general.

The results obtained in this work also suggest that manipulating

stimulus duration could be an effective, and fairly straightforward way

to create situations of decoupling between positive and negative

responses, and this effect could be explored to study particular aspects

of their relationship. From a more practical standpoint, these results

also point to the need of careful response modeling when studying

PBRs and NBRs, which may be particularly critical for longer stimulus

durations (in this case, checkerboard stimuli longer than 16 s). Parame-

ters such as the response area, peak timing, return to baseline and

under/overshoot showed clear deviations between PBRs and NBRs, as

well as across different stimuli in the same region. The inclusion of tem-

poral and dispersion derivatives to the canonical HRF models can offer

some flexibility regarding the delay and width of the main response

peaks, but more flexible approaches such as finite impulse response or

Fourier basis set modeling may be necessary to account for more par-

ticular response features, as long as the concomitant losses in detection

power and interpretability remain acceptable. In this work, we used a

canonical HRF model for response mapping, relying on the high detec-

tion power of block designs to ensure robustness against modeling

errors. Response characterization was performed either directly on the

observed average responses, or aided by modeling with inverse logit

functions (Lindquist & Wager, 2007), which also showed a favorable

tradeoff between flexibility and robustness, and could be a pertinent

option for future studies as well.

4.3 | Grey matter—vein separation

Draining veins are known to influence response localization (Barth &

Norris, 2007) and can propagate activity-related changes in blood oxy-

genation for several mm downstream from activation sites (Turner,

2002). Furthermore, as vein-propagated responses are delayed in time

relative to the original activation site, their contributions to response

averaging can affect the temporal properties of the responses of inter-

est (Shmuel et al., 2007). Thus, although less influent at 7T than at

lower field strengths (Yacoub et al., 2001), venous contributions are

undesirable, especially for the characterization of lower-contrast

responses such as NBRs.

Various approaches for vein identification in fMRI have been pro-

posed (Barth & Norris, 2007; Koopmans et al., 2010; Menon, 2002).

Given the high spatial resolution available at 7T, and decreased venous

T�
2, large veins are clearly discernible as dark, focal susceptibility arti-

facts in the functional data, motivating the use of image-based segmen-

tation approaches. To our knowledge, this is the first study applying

multiscale vessel-enhancement directly on GE-EPI data, an approach

which presents several advantages: (i) it avoids the acquisition of sepa-

rate “vein-sensitized” images, and the necessary co-registration steps

to fMRI data, which need to be highly accurate for correct vessel local-

ization; (ii) being an image-based method, it can be easily optimized

through visual inspection; and (iii) the method is applied retrospectively,

with no specific requirements imposed on the acquisition (apart from

sufficient spatial resolution). It should be noted that this segmentation

approach does not yield actual venograms, as the susceptibility artifacts

created by veins expand beyond the vessels into adjacent tissues.

While lowering the specificity of segmentation, this effect is actually

advantageous as it allows the detection of vessels thinner than the

available spatial resolution, and can lead to more conservative response

estimations in grey matter, as tissues with T�
2 perturbations due to the

proximity of veins are likewise excluded.

In this work, the influence of veins in both response localization

and characterization could be clearly observed (Figure 6a,b). Moreover,

the stimulus dependence of venous ROIs, segmented as described

above, was considerably less regular than that of grey matter ROIs (Fig-

ure 5c), potentially due to their inherently poorer response specificity

and/or to a higher sensitivity to subject motion and physiological noise.

Moreover, when combining venous and grey matter responses

together as if no vein separation had been performed, the stimulus

dependence of merged responses also became less regular than in grey

matter alone. These effects support that vein separation is indeed

highly desirable when studying BOLD responses of low amplitude and/

or occurring in small brain regions.

4.4 | ICA-assisted denoising

ICA has been extensively explored for fMRI data analysis and denoising

(Smith et al., 2013), and can be combined with methods for automatic

source classification (Griffanti et al., 2014; Salimi-Khorshidi et al.,

2014). In this work, we opted for manual source selection performed

under fixed criteria (Kelly et al., 2010; van der Zwaag et al., 2009b), to

ensure that no paradigm-related sources were taken. The timecourses

of the selected ICs were then included as confounds in GLM regres-

sion, as often done for motion and physiological noise (Bianciardi et al.,

2009), thus unifying response detection and noise modeling in the

GLM analysis stage. The performance of ICA-assisted denoising was
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assessed based on the data variance explained by ICA regressors, and

their impact on response variability. The first measure relied on esti-

mating R2
adj, which allows for unbiased comparisons between models

with different numbers of regressors. The second measure is not inde-

pendent of the number of degrees of freedom, but provides a more

direct indication of improvements in response denoising. As exempli-

fied for visual and auditory cortex responses, the ICA-based confounds

were found to explain significant proportions of data variance, superior

to those of head motion confounds, and were especially important for

the NBR ROIs, where the paradigm contributions were smaller than

those of the confounds. Concordantly, reductions in block-by-block

variability were significant for all responses, and are particularly rele-

vant for NBR estimation, given their smaller amplitude. Overall, the use

of ICA-derived confounds proved to be a valuable approach, which can

complement or even replace other techniques targeting correlated

noise sources, such as physiological noise modeling based on external

monitoring.

5 | CONCLUSION

Ultra-high field fMRI, explored using accelerated EPI acquisition, com-

bined with vein segmentation and ICA denoising, allows the robust

detection of positive and negative BOLD responses to visual stimula-

tion in various brain regions within and beyond the visual cortex, even

with a paradigm lasting only a few minutes per subject. Under stimuli

of varying duration and intensity, both positive and negative responses

can exhibit important region-specific differences in stimulus depend-

ence. In the light of growing evidence associating negative BOLD with

local neuronal deactivation, these findings suggest the existence of

dynamic cross-modal neuronal interactions that depend on stimulus

intensity and duration, involving various regions of the brain, even

under passive viewing of basic visual stimuli. In data analysis, the exclu-

sion of large-vein contributions and correlated noise confounds can sig-

nificantly improve BOLD response estimation, boosting sensitivity and

specificity.
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